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In the water-scarce environment of South Africa, drought-tolerant eucalypt species have the potential to contribute 
to the timber and biomass resource. Biomass functions are a necessary prerequisite to predict yield and carbon 
sequestration. In this study preliminary biomass models for Eucalyptus cladocalyx, E.  gomphocephala and 
E.  grandis × E. camaldulensis from the dry West Coast of South Africa were developed. The study was based 
on 33 trees, which were destructively sampled for biomass components (branchwood, stems, bark and foliage). 
Simultaneous regression equations based on seemingly unrelated regression were fitted to estimate biomass while 
ensuring additivity. Models were of the classical allometric form, ln(Y) = a + x1ln(dbh) + x2ln(h), of which the best 
models explained between 70% and 98% of the variation of the predicted biomass quantities. A general model for the 
pooled data of all species showed a good fit as well as robust model behaviour. The average biomass proportions of 
the stemwood, bark, branches and foliage were 60%, 6%, 29% and 5%, respectively.

Keywords: additivity, allometry, biomass, Eucalyptus, modelling, seemingly unrelated regression
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Introduction

South Africa is a water-scarce country with mean annual 
rainfall of 450 mm (van Wyk et al. 2001; Louw and Smith 
2012). Magumba (1998) pointed out that about 21% of the 
country, especially in the Western Cape region, receives 
less than 400  mm of rainfall per year and precipitation 
is received mainly in winter when temperatures are low, 
resulting in minimal vegetative growth during that period. As 
a result of water scarcity and the generally dry conditions 
of South Africa, most of the more suitable land has been 
allocated to agricultural crop production while forest planta-
tions were established on marginal sites, which have often 
relatively poor soil and water for growth (Poynton 1979; van 
Wyk et al. 2001).

A lack of suitable land to support plantations and woodlot 
establishment led to an exploration for drought-tolerant 
species (van Wyk et al. 2001) that could supplement the 
traditionally established species used in woodlots on existing 
and emerging farms. Different eucalypt species were 
planted in experimental plots under the Dry Land Industrial 
and Rural Afforestation Project (DIRAP), with the following 
objectives: (1) identification and selection of appropriate 
tree species and provenances, (2) multiplication of selective 
material by vegetative propagation, (3)  determination of 
the most appropriate methods of plantation establishment 
and management on marginal sites, and (4) developing 
an efficient and less intensive management system for 
various community forestry objectives (Magumba 1998). 
This trial showed that Eucalyptus  gomphocephala, 
E. cladocalyx and the hybrid E. grandis × E. camaldulensis 

were superior in drought tolerance and growth rate in the 
selected environment. Since then, several studies have 
determined different aspects of tree growth of these species 
(Magumba 1998; van Wyk et al. 2001; Botman 2010). 
For example, Botman (2010) conducted a study on the 
production of woodlots for bioenergy, which revealed that 
E. grandis × E. camaldulensis and E. grandis × E. urophylla 
were very useful for biomass production.

Forest biomass assessment has become an important 
issue in the world mainly due to three reasons: (1) climate 
change and carbon sequestration, (2) determination of 
ecosystems dynamics, especially growth and yield, and 
(3)  renewable energy as an alternative for fossil fuels 
(Bettinger and Boston 2009; Dovey 2009; Baishya and 
Barik 2011; Goicoa et al. 2011; Kitenge 2011; Seifert et al. 
2014). Samalca (2007) defined biomass as ‘organic material 
both above and below ground; living and non-living…’. In 
the following, the focus will be put on phytomass – biomass 
attached to plants. Below-ground phytomass consists of 
roots, whereas above-ground biomass includes all living 
and dead biomass above ground. Kunneke et al. (2014) 
have summarised ways of biomass resource assessment 
using terrestrial and airborne methods. Most methods 
involve ground truthing based on models that have been 
derived by destructive sampling. Field measurement 
approaches are the most common method employed in 
biomass assessment because of their simplicity and the 
robust data obtained (Chiyenda and Kozak 1984; Samalca 
2007; van Laar and Akça 2007; Kunneke et al. 2014). 
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Biomass models derived from destructive sampling are 
typically based on regressor variables, such as diameter at 
breast height (dbh) and tree height (h), to predict complex 
variables, such as total tree dry weight or biomass composi-
tions (Grundy 1995; van Laar and Akça 2007; Mutakela 
2009; FAO 2012; Seifert and Seifert 2014).

The simplest forms of biomass models are transformed 
linear models, which are fitted by least squares regression 
for parameter estimation. However, non-linear functions 
are increasingly common as well (Cunia 1986; Smith 
1993; FAO 2012). However, for the benefits of using the 
linear regression framework, models are often linearised 
by transforming dependent and independent variables; 
nevertheless, this generates a biased biomass quantity 
estimation that needs to be corrected (Verwust 1991; 
Samalca 2007; Seifert and Seifert 2014).

Despite the existence of different biomass models for 
eucalypt species, specific models for predicting biomass 
for the selected drought-tolerant species in South Africa are 
lacking (Ackerman et al. 2013). No models have so far been 
established for E. cladocalyx or E. gomphocephala. Existing 
biomass equations for E. grandis × E. camaldulensis (Dye 
et al. 2004) have been established with data originating 
from sites that receive much higher average precipitation 
(1  100–1  300  mm) in a different rainfall regime (summer 
rainfall areas). It is not clear whether the allometric relations 
between dbh, h and biomass will remain constant for trees 
grown in a substantially drier environment. 

Thus, the aim of this study was to develop biomass 
equations to estimate above-ground biomass for the selected 
drought-tolerant eucalypt genotypes E.  gomphocephala, 
E.  cladocalyx, and E.  grandis × E. camaldulensis grown in 
a dry winter-rainfall environment. In order to develop reliable 
equations, particular attention has been paid to the fact that 
the biomass models should satisfy the additivity property, 
which means that individual models for biomass components 
deliver the same result, when all summed as the regression 
model for the total biomass.

Materials and methods

Study sites
Samples were taken from three sites (Pampoenvlei farm, 
Chemfos and Coetzenburg) located on the western Atlantic 
coastline of South Africa in the Western Cape province. 
Pampoenvlei is located at 33°29′ S and 18°23′ E, Chemfos 
at 32°57′ S and 18°26′ E, while Coetzenburg is situated in 
the Stellenbosch area at 33°57′ S and 18°52′ E (Botman 
2010; du Toit et al. 2012).

The study sites experience a Mediterranean-type 
climate with winter rainfall and dry hot summer months. 
Botman (2010) indicated that Pampoenvlei and Chemfos 
are classified as semi-arid areas with winter rainfall of 
less than 400  mm, received between April and August 
(Table  1). Temperature ranges between 7  °C to more 
than 35 °C with an aridity index of between 0.20 and 0.50 
(du Toit et al. 2012). Coetzenburg is classified as a dry 
subhumid area because it receives slightly higher rainfall 
than the other two sites.

The potential natural vegetation covering the study 
sites is Fynbos (Magumba 1998). Fynbos is dominated 

by sclerophyllous scrubs growing up to 3  m in height. 
Magumba (1998) identified two types of Fynbos: (1) Coastal 
Fynbos and (2) Coastal Renosterveld. The major plant 
families represented in these two vegetation types are 
Proteaceae and Restionaceae, which are influenced by the 
soil types in their proportional contributions.

The terrain at Pampoenvlei farm and Chemfos is almost 
flat with a slope of less than 3%, whereas Coetzenburg is 
located on a slope at Stellenbosch mountain (Botman 
2010). Soils at these sites have been classified according 
to the South African Soil Classification System (SASCS) as 
Lamotte, Constantia, Fernwood and Kroonstad, which all 
support normal rooting systems (Magumba 1998; van Wyk et 
al. 2001). During winter, water tables can be found between 
2 and 3 m from the soil surface (Botman 2010).

Methods
Biomass modelling was done as a two-stage upscaling 
procedure (Seifert and Seifert 2014); in Step 1, the 
biomass of the components was upscaled from samples 
to individual tree level, and Step 2 provided models for 
upscaling from tree to stand level with the help of easily 
measurable ancillary variables such as dbh and h. The 
study concentrated on the model development. The 
upscaling procedure itself, which can be done based on 
all trees or stand averages (see e.g. Kunneke et al. 2014), 
was not part of this study.

Field sampling
In order to obtain a representative distribution of tree 
sizes in the sampling process, trees were sampled from 
three diameter classes – small, medium and large trees – 
according to the diameter spectrum prevalent in the 
experimental plots. The small trees had diameters less 
than 21 cm, medium class tree diameters were between 
21 and 30  cm, whereas the large trees had diameters 
above 30 cm. A total of 28 trees were sampled from the 
Pampoenvlei farm and Chemfos. In addition, five small 
trees with diameters less than 12 cm were sampled from 
Coetzenburg in order to improve the dbh and h relationship 
(Kunneke et al. 2014). 

Prior to felling, different measurements were taken 
for each sampled tree, such as dbh, h and crown height. 
After felling, discs were cut at 0.3 m, 1.3 m, 25% and 60% 
height, and at 5  cm stem diameter over bark. In order 
to reconstruct the stem volume more precisely, stem 

Table 1: Climatic characteristics of the study sites

Climatic information Chemfos Coetzenburg Pampoenvlei
Mean annual rainfall (mm) 400 735 592
Mean annual temperature (°C) 17.5 17.3 18
Mean maximum of warmest 
month (°C)

28 28 29

Mean maximum of coldest 
month (°C)

8 8 8

Mean annual minimum 
temperature (°C)

11 12 12

Altitude (m asl) 220 250 70
Coordinates  32°57′ S, 

18º26′ E
33°57′ S,
18°52′ E

33°29′ S,
18°23′ E
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diameters were additionally measured at every metre up 
to 5  cm stem diameter over bark. The sampling followed 
routines established by Innventia for comparison of growth 
and properties of trees of different species and growth 
conditions (Lundqvist et al. 2013), and the upscaling 
process was done according to the methodology proposed 
by Seifert and Seifert (2014).

Reconstruction of crown biomass
Given that not all branches could be measured in the 
field, a regression-supported sampling and upscaling was 
employed. Sample branches were collected following a 
range of different sizes along the stem. A minimum of five 
branches per tree were sampled for biomass upscaling. 
These branches were also sampled for leaf and branch 
biomass (wood and bark combined). Furthermore, the 
diameters of all the branches were recorded as well as 
their location on the stem; dead branches were measured 
separately. The samples were further prepared for drying 
in the laboratory where the leaves were stripped from the 
branches. The samples were dried at 60  °C to constant 
weight. The resulting dry foliage and branch biomass 
data formed the basis for the regression models that were 
used to predict total branch biomass of a tree based on all 
branch diameters.

Stem biomass reconstruction
The biomass of stemwood and bark was determined for 
each stem section individually by multiplying section volume 
with the respective basic density of the stem section. The 
stem volume was reconstructed using Smalian’s formula as 
suggested in Ackerman et al. (2013). Based on piecewise 
volume determination of the stem measurements, the 
sample discs were used to derive wood density and bark 
thickness. Stem diameter under and over bark were 
measured for all the sample discs in four directions in order 
to calculate the bark and xylem volume. 

Oven-dry weight (at 60 °C) of the stem and bark samples 
was measured separately. Basic densities for the discs 
were determined using x-ray-based computer tomography 
(CT‑scanning) following a method proposed by du Plessis 
et al. (2013). An industrial General Electric L240 micro-CT 
scanner was used for this purpose at the Department of 
Forest and Wood Science, Stellenbosch University.

CT-scanning images were then reconstructed in three 
dimensions. The resulting x‑ray attenuation (imaged as 
grey values) related to absolute material density. Density 
calibration curves were then constructed based on 13 
wood samples of known density (du Plessis et al. 2013) to 
translate the CT-scanner grey values to density values. 

Statistical analysis: fitting biomass models
Biomass models were fitted for the total biomass and the 
biomass components of trees based on a pooled data set of 
all species and for each species separately. Data analysis 
focused mainly on biomass model formulation that ensured 
additivity. Parresol (2001) and Goicoa et al. (2011) defined 
additivity as a condition in which the predictions from the 
biomass component regression sum up to the predictions 
from the total tree biomass model. The general systems of 
equation were presented as illustrated in Equations 1 and 2.

	            Linear model: yi = ai + bxi + ei	  (1)

            Log-transformed model: ln(yi) = ai + bln(xi) + ei 	 (2)

where yi represent the biomass, ai and bi the estimated 
parameters, xi represents the independent variables 
(e.g. dbh, h and crown height), and ei is the residual error. 

An adequate statistical procedure for fitting these systems 
of equation is simultaneous multivariate regression. 
Seemingly unrelated regression (SUR) is one form of 
simultaneous equation fitting that has been proven effective 
in modelling cross-equation correlation (Srivastava and 
Gile 1987; Parresol 1999; Cadavez and Henningsen 2011). 
SUR was performed with the statistical software R using the 
Systemfit package (R Core Team 2013; Henningsen and 
Hamann 2013).

All models were tested for basic regression assumptions, 
such as normality, homogeneity of variance and independ-
ence of the data. Normality was tested on the residuals 
of the regression using the Shapiro–Wilk test, whereas 
homoscedasticity was evaluated visually on the plots of 
predicted values against residuals (Ackerman et al. 2013).

The following goodness-of-fit statistics were used for 
model comparison as suggested in Parresol (1999); 
(1)  degree of determination, also known as fit index 
(R ²), (2)  root mean square error (RMSE) and Akaike’s 
information criterion (AIC). Generally, these  models 
were logarithm-transformed models that need to be 
back-transformed. However, logarithm-transformation 
models yield biased biomass quantities in the process of 
back-transformation (Cunia 1986; Hellman and Fowler 
1999; Samalca 2007). In order to correct the bias during 
back-transformation the error term must be squared and 
divided by 2 (Equation  3), as pointed out by Seifert and 
Seifert (2014), based on the work of Sprugel (1983).

	 exp (biomass) = exp (b0 + b1 (dbh) + e2/2)	 (3)

where exp is the exponential, b0 and b1 are estimated 
parameters, and e is the error (standard deviation) associ-
ated with the model. 

Results

Tree biomass descriptive statistics
The mean dbh for 33 sampled trees was 25.23 cm and mean 
height was 15.3 m. Eucalyptus cladocalyx had a mean dbh of 
29.36 cm, whereas that of E. gomphocephala was 20.78 cm 
and E. grandis × E. camaldulensis was 27.23 cm (Table 2). 

Table 2: Description of sample trees for the biomass study with 
minimum, mean, maximum values and standard deviation

Species Variable Min. Mean Max. SD
E. cladocalyx dbh (cm) 21.5 29.36 37.1 4.4

h (m) 13 15.31 18.5 1.7
E. gomphocephala dbh (cm) 7.2 20.78 32.6 8.1

h (m) 7.8 12.76 19.4 3.2
E. grandis × E. dbh (cm) 16.1 27.23 36.5 6.8
camaldulensis h (m) 12.3 15.41 17.7 1.2
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Upscaling of biomass
Table 3 shows the selected branchwood and foliage biomass 
models, which were developed to upscale branch biomass 
from branch basal area (ba) and branch diameter (d). These 
models were used in the upscaling of biomass from the 
sampled branches to the tree level. In each case, several 
models were established and the best biomass models 
were selected to predict biomass for the branches and 
foliage. Degrees of determination between 0.60 and 0.70 
were achieved. Branchwood biomass models fitted the data 
generally better than foliage biomass models as indicated by 
the higher R 2 values (Table 4). The best-fitting models were 
selected based on the AIC with consideration of significance 
of the full model and all of its estimated parameters.

The distribution of mean biomass for all the components 
after upscaling to tree level showed that on average stem 
biomass contributed 62% (CI 95% ± 2.37) of the pooled 
biomass, which was the largest percentage as expected 
(Figure 1). Branches had a percentage of 26% (CI 95% ± 
1.34) and bark contributed 7% (CI 95% ± 0.56). Foliage had 
the lowest contribution towards the total biomass with less 
than 5% (CI 95% ± 0.34).

Fitted biomass model
In the second modelling step that provided models for 

upscaling from the tree to the stand, there was a strong 
relationship between biomass for each component and the 
independent variables. The strength of the relationships 
was confirmed by the Pearson’s moment correlation 
coefficient (r ), of which values were in the range of 0.70 
to 0.90. Stem biomass had the best relationship with dbh, 
whereas the relationship between foliage and dbh was not 
as good as that for other components (Figure 2).

Table 4 shows the final models for each species and a 
system of pooled models, which included the data from 
all the three species. In each set of equations, the total 
biomass model was the best-fitting model as it had the 
highest R 2 value and the lowest RMSE value. For example, 
the pooled model had an R 2 value of 0.96, the E. gompho-
cephala total biomass model had an R 2 value of 0.98, 
that for E. cladocalyx had an R 2 value of 0.96 and that for 
E.  grandis × E. camaldulensis had an R 2 value of 0.98. 
Foliage biomass models had the least goodness of fit based 
on R 2 and RMSE values.

Model goodness of fit
Model goodness of fit and suitability was tested using 
R 2, RMSE, significance of the parameters, and by visual 
assessment of the plot of the residual vs predicted values. 
The model formulated in this study had high R 2 values 

Table 3: Crown upscaling models from sample branch to tree level. Bbm = Branch wood biomass, Fbm = foliage biomass, ba = branch basal area

Species Component Model R 2
Pooled Foliage Fbm = 147.34 + 233874(ba) 0.70

Branches ln(Bbm) = 2.05 + 10.53ln(d) 0.71
E. cladocalyx Foliage Fbm = 254.59 + 260150.49(ba) 0.77

Branches ln(Bbm) = 1.95 + 2.14ln(d) 0.81
E. gomphocephala Foliage ln(Fbm) = 1.59 + 1.55ln(d) 0.71

Branches ln(Bbm) = 1.92 + 2.02 ln(d) 0.78
E. grandis × E. camaldulensis Foliage Fbm = 76.28 + 224039.4ln(d) 0.62

Branches ln(Bbm) = 2.03 + 2.1ln(d) 0.61

Table 4: Final biomass equations according to components and species with bias correction factors (BCF). BK = bark biomass, F = foliage 
biomass, B = branch wood biomass, S = stem biomass, T = total above-ground tree biomass (all in kg); h = tree height (m); dbh = stem 
diameter at breast height (cm); RMSE = root mean squared error

Species Component Model R 2 RMSE BCF
Pooled Bark In(Bk) = −3.49 + 0.73ln(dbh) 0.92 0.094 0.019

Foliage ln(F) = −2.36 + 1.58ln(dbh) 0.64 0.484 0.019
Branches ln(B) = −3.62 + 1.47ln(dbh) − 2.07ln(h) 0.88 0.412 0.019
Stem ln(S) = −5.59 + 2.16(dbh) + 1.48ln(h) 0.98 0.155 0.019
Total ln(T) = −5.59 + 2.16ln(dbh) + 1.45ln(h) 0.96 0.094 0.019

E. cladocalyx Bark In(Bk) = 2.81 + 0.23ln(dbh) − 0.59ln(h) 0.77 0.886 0.018
Foliage ln(F) = −8.58 + 3.45ln(dbh) 0.5 0.326 0.018
Branches ln(B) = −14.62 + 2.07ln(dbh) 0.75 0.447 0.018
Stem ln(S) = −4.73 + 1.802(dbh) + 1.57ln(h) 0.95 0.085 0.018
Total In(T) = −4.014 + 2.33ln(dbh) + 0.82ln(h) 0.96 0.094 0.018

E. gomphocephala Bark In(Bk) = −1.21+ 1.99ln(dbh) 0.78 0.27 0.021
Foliage ln(F) = −0.68 + 1.44ln(dbh) 0.78 0.26 0.021
Branches ln(B) = −4.40 + 5.85ln(dbh) 0.6 0.27 0.021
Stem ln(S) = −4.40 + 5.85ln(dbh) 0.85 0.34 0.021
Total In(T) = −1.156 + 1.89ln(dbh) + 0.75ln(h) 0.98 0.07 0.021

E. grandis × E. camaldulensis Bark In(Bk) = −3.41 + 0.72ln(dbh) 0.93 0.12 0.131
Foliage ln(F) = −0.68 + 1.44ln(dbh) 0.79 0.33 0.131
Branches ln(B) = −8.94 + 1.45ln(dbh) 0.95 0.2 0.131
Stem ln(S) = −3.86 + 1.73(dbh) +1.33ln(h) 0.97 0.097 0.131
Total In(T) = −3.49 + 2.22ln(dbh) + 0.79ln(h) 0.98 0.038 0.131
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ranging from 0.70 to 0.98. The goodness of fit was also 
confirmed by the small RMSE values (Table 4, Figure 4). 

The overall models and all of the estimated parameters 
were significant with smaller p‑values (p < 0.05). Normality 
and homoscedasticity assessments indicated no deviation 
from normality (Shapiro–Wilk test, p > 0.05) and no hetero-
scedasticity pattern was detected in the residual plots as 
shown in Figure 3 and Figure 4, respectively. 

Discussion

Model interpretation
The most common independent variables used in biomass 
modelling are dbh, d2h (squared dbh times height) and 
crown dimensions (Parresol 1999). In addition to these 
variables, h was also used to improve the model fit. 

Grundy (1994) indicated in the study of biomass in Miombo 
woodlands that dbh and d2h alone gave high R 2 values of 
up to 0.90. Further addition of h to the model as a predictor 
variable resulted in a small improvement of R 2 to 0.96. 
The same was obvious in the present study, in which the 
basic independent variables was dbh, whereas h was also 
used to compliment dbh. However, in most cases, h was 
observed not to be significant, most likely because of the 
small sample size (33  trees) and the too small spread of 
heights within the sampled tree population.

The models formulated in this study explained between 
70% and 98% of the variation on biomass, which is 
comparable to similar studies (e.g. Magalhães and Seifert 
2015). The total biomass model had the best fit in most 
cases followed by the stem biomass model, whereas 
foliage models showed the least goodness of fit. This 
is a general observation in biomass modelling because 
foliage biomass is influenced by many climatic parame-
ters and is known to change over the year (Magumba 
1998). In separate studies conducted by Seifert and 
Müller-Starck (2008), Saint-André et al. (2004) and Zohar 
and Karschon (1984), similar models were obtained with 
R 2 values of up to 0.96; however, foliage models had 
consistently the lowest degrees of determination with R 2 
values of about 0.50.

The goodness of fit was confirmed by attaining regres-
sion assumptions. Normality was tested on the residual and 
heteroscedasticity was assessed by plotting the predicted 
values against the residuals. The plots (Figure  4) did not 
show any clear noticeable pattern, therefore confirming the 
uniformity of variance (homoscedasticity). Nevertheless, 
Samalca (2007) stated that it is common in biomass data 
to have an increased variance with an increase in tree 
dimensions. Thus, logarithmic transformation was employed 

Figure 1: Mean biomass composition according to the biomass 
components. Error bars represent the SD
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Figure 2: Biomass and diameter at breast height (DBH) relationship for the pooled biomass components
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Figure 3: Predicted vs observed values for the pooled biomass models

Figure 4: Predicted vs residuals plots for the biomass models
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for achieving uniformity of variance in the model as 
suggested by Sprugel (1983) and Smith (1993).

Application of the model
The models were formulated based on three eucalypt 
genotypes (E.  cladocalyx, E.  gomphocephala and 
E. grandis × E. camaldulensis), which have been proven to 
be drought tolerant on the dry West Coast of South Africa. 
Hence, application of these models should be confined to 
these genotypes in conjunction with consideration of the 
climatic conditions of the sampled sites. This suggests 
that the models might also be used to predict biomass 
for genotypes in regions with similar climatic conditions 
other than the study site. However, this must be done with 
caution because the number of sampled trees was fairly 
small. The most robust estimation could be expected from 
the pooled model (at the cost of losing specificity).

In addition, the models were established on a sample 
with limited diameter range (7–37 cm), hence extrapola-
tion (predictions outside the range) must not be done 
otherwise erroneous biomass quantities may be attained, 
as pointed out by van Zyl (2005). However, as already 
mentioned before, the models remain preliminary and must 
be validated against further data.

Conclusions

In this study, sets of equations were developed for the 
prediction of total and component above-ground biomass 
of three selected drought-tolerant eucalypts. Five models 
were formulated for each genotype, which included four 
models for the biomass components (stem, bark, branches 
and leaves) and one model predicting total biomass. In 
addition, another set of five models was parameterised for 
the pooled data, which included the samples from all the 
three genotypes.

The tested predictor variables were dbh, d2h and h. In 
most cases, dbh was used as the major predictor variable 
whereas h was included, where significant, to improve the 
model fit. However, given the limited number of sampled 
trees (n  =  33) from only a few even-aged stands in the 
sample, h was not significant in a number of models. 
This explains why these models must be considered as 
preliminary and hence the need to include more trees in 
future research. The models explained high percentages 
of variation, which were shown by the R2 values. The 
normality and homoscedasticity assumptions were tested 
and satisfied statistically by the model, while additivity was 
achieved by using SUR.

This study is the first to establish above-ground biomass 
models for E. gomphocephala and E. cladocalyx and the 
first to fit models for E. grandis × E. camaldulensis trees 
growing in very dry winter rainfall conditions. With the 
necessary caution the models might be used as a baseline 
for above-ground biomass resource assessment despite the 
limited sample size in this study. 
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